
Evolutionary Approach to Finding an Optimal Racing
Line in a Vehicle Simulator

Christopher Nosowsky∗
nosowsky@msu.edu

Michigan State University
East Lansing, Michigan, USA

Kevin Smith∗
smit2958@msu.edu

Michigan State University
East Lansing, Michigan, USA

ABSTRACT
Automotive racing is a popular form of entertainment that is
enjoyed worldwide. Drivers from all over the world gather
to compete in competitions. These competitions drive in-
novation for vehicle technologies and increase driver skills.
Simulators provide drivers with a safe, cost-effective, and
efficient way to hone their skills further. This paper intro-
duces the problem of finding an optimal racing line and
describes the simulation environment used to conduct our
testing. We characterize and simulate two logic controllers
using The Open-Source Racing Simulator (TORCS). The col-
lected lap times and vehicle damage are used in a fitness
function analyzed by a genetic algorithm (GA) to search for
an optimal solution. These results are compared between
known starting parameters, a randomized set, and the built-
in TORCS simulation drivers. Finally, we conclude with a
summarization of our findings and recommendations for
future research.

CCS CONCEPTS
• Computer systems organization→ Real-time systems;
• Computing methodologies → Vagueness and fuzzy
logic.

KEYWORDS
Genetic algorithm, fuzzy logic, single-objective optimization,
minimization, simulation, racing

1 INTRODUCTION
When it comes to popular live television broadcasts world-
wide, racing is often up there as one of the most popular
entertainment options for viewers. Major sporting events
such as the Daytona 500 and Indianapolis 500 have been
ranked amongst the top 100 sporting events of 2021 [9]. Its
viewership has brought professional racecar drivers world-
wide, a plethora of sponsorship opportunities, and a network
of funding between teams, stakeholders, and organizations.
Safety has also been advanced across racing organizations,
which has led to stricter rules and regulations amongst teams.
Mixing this with the surge inmanufacturing costs, race teams
∗Both authors contributed equally to this project.

have started to resort to better, more cost-effective ways to
save money. One of these ways is through simulation soft-
ware. Proprietary software like iRacing [2], Assetto Corsa
[1], TORCS [4], and others have been built with real-world
physics, damage, and environmental models to simulate real-
world behavior. Some users are professional racecar drivers
looking to get an upper edge in the off-season or before their
next race. For others, this might be the closest they get to rac-
ing. These simulators play a significant role in giving drivers
an upper edge before the races or in the off-season and can
reduce the costs of paying for race equipment. While this is
nice, it can be challenging to start driving around without
first understanding the track layout. Simulators provide aids,
such as brake-assist and a "driving line" drawn over the track
surface to point out optimal braking and acceleration zones
to help drivers understand the track they will be racing on.
This not only gives drivers who are learning the track a safer
and faster line to follow, but it also avoids drivers from ran-
domly picking a line that "feels right" but is not the overall
most efficient way around the track. The driving line gets
rid of the guessing game and instead introduces an optimal
line for drivers to follow.

2 PROBLEM DESCRIPTION
Currently, simulation software either excludes driving line
assistance or fails to provide the best driving line. Drivers
using these lines are often confined to the limits of the line
itself, where there are often opportunities for improvement
since human domain experts often construct the driving
lines from scratch. Additionally, it becomes tedious work
when one must bring in manual testing for each track, car,
and tire model update. It also has been noted that there is a
lack of research that addresses the need for an automated
design of racing lines using simple heuristics [6]. This paper
introduces an evolutionary computation approach to finding
an optimal racing line in a vehicle simulator. Our method
would eliminate the need for manual testing and instead rely
on a GA to determine the best line to follow. First, we will set
up a driver that can navigate a track using its central steering,
speed, gearing, and braking controls. The GA will be dealing
with the speed and steering, where we create two fuzzy sub-
controllers inside our driving agent to host our control logic



Nosowsky and Smith

for outputting the best speed and steering at every given
instance around the tracks. Our fuzzy sub-controllers expect
parameters that determine the target speed and steering to
the driver. These are the parameters that we will be applying
to our GA to find the best values that satisfy the following
goal: driving fast and driving safely. We will be considering
damage when a driver contacts any wall on the track.Wewill
also not be considering the damage from drivers contacting
other vehicles in our tests. The vehicles will be transparent to
each other, allowing us to test 10 vehicles in one generation
of testing as if they were alone on the track. We decided
to test with ten vehicles to speed up our genetic algorithm
evaluation process. It also gives us an overall view of the
progression of our population members in each generation.
This progression is changed through the works of our genetic
algorithm, which is responsible for adjusting the parameters
of our membership functions. Our membership functions
are trapezoidal in shape, which defines the boundaries for
our controllers’ fuzzy rules. Through the evaluation process,
the genetic algorithm will ultimately return a solution with
the best lap times with minimal car damage.

3 SIMULATION AND TESTING
ENVIRONMENT

The following sections detail the simulation and testing en-
vironment used in analyzing the GA and the fuzzy logic con-
trollers. All the software execution was in an Ubuntu virtual
machine but could also be performed on a Windows-based
system. Details of the installation methods are documented
in our source code repository, the TORCS [4] project website,
the patched version of TORCS with the Simulated Racing
Championship (SCR) [11], and the ROS [3] project websites.

3.1 TORCS
Testing for an optimal racing line requires an open track, ve-
hicle, and a driver to gather the needed data. However, many
simulators do not provide open-source access to develop or
expand upon their proprietary software. The first step would
be to get access to the necessary data to test across many
generations. One such project that gives us this direct ac-
cess to their simulation software is TORCS, a multi-platform
car racing simulation that is ideal for artificial intelligence
research.
A modification of TORCS was created to host is an inter-

national Simulated Racing Championship (SCR) competition
held for major conferences in the field of Evolutionary Com-
putation and Computational Intelligence, and Games [10]
[12]. Competitors would design a controller for a vehicle and
compete against unknown tracks and other drivers. There is
a number of sensors provided that provide information to the

vehicles. The authors of [10] have the sensors’ descriptions,
and value ranges well documented.

The TORCS application has onemajor drawback: the game
was a stand-alone application. Being a stand-alone applica-
tion brings the complication that races are not in real-time,
execution is blocking, i.e., one bot could stall out of the rest
of the execution chain. There is also no separation between
the bots and the racing engine. The creation of the SCR
patch provided a client/server interface between the game
engine and the bots. The SCR patch solves the problem with
blocking execution as each bot is processed on a separate
computer using User Datagram Protocol (UDP) connections
to communicate data between the game engine and the bot.
The SCR patch also provides a game-level system tic, that is
roughly every 20ms (or 50 Hz), which provides the clients
with updated sensor information and for the bots to com-
municate back to the game engine [10]. Figure 1 depicts the
interaction between the client controllers and the TORCS
game engine and server bots.

Figure 1: The architecture of the TORCS competition
software with client nodes.

The TORCS application and SCR patch were modified to
test the fuzzy logic controllers and the genetic algorithm.
Typically, vehicles contacting obstructions such as walls and
other vehicles cause damage to the vehicle. After receiving
enough damage, the vehicle is removed from the race simu-
lation. As stated in the problem statement, vehicle-to-vehicle
damage was not considered for this project. This is where
we had to go into the simulation’s source code and turn off
the vehicle-to-vehicle damage. The encoding of the values
to be considered for the genetic algorithm was also limited
to values that could be modified with the client interface
that is communicating between the bots (controllers) and
the game engine. Otherwise, changing other parameters of
the game would require recompilation of the application



Evolutionary Approach to Finding an Optimal Racing Line in a Vehicle Simulator

and restarting the simulation for each population member
or generation.

3.2 ROS
In addition to the modifications created with the SCR patch
for TORCS, the project also uses a client interface that en-
ables the Robotic Operating System (ROS) to communicate
to the game engine as a bot. ROS is a framework used pri-
marily for robotic software but can be used for virtually any
project outside of robotics. The goals of the design of the ROS
framework can be summarized as peer-to-peer, tools-based,
multi-lingual, thin, and free and open-sourced [7].

The peer-to-peer part of the framework is naturally an ex-
cellent fit for the needs of the genetic algorithm that is tested
within this paper. It provides the ability to create multiple
clients hosted on the same computer or executed from sepa-
rate computers within the same network. If the processing
is overburdening the host machine, a single driver or a set
of drivers can be offloaded to another computer. The multi-
computer processing has virtually no impact provided there
are no network limitations that prohibit the remote nodes
from sending and receiving the information they require to
the host machine on the network.
Nodes, or software modules, within the ROS framework

are processes that perform computation [7]. Each TORCS
client shown in Figure 1 is a ROS node for this project. The
nodes within the network communicate with each other with
messages. A message is a strictly typed data structure that
supports standard primitive types, such as integer, floating-
point, boolean, strings, etc. Messages can contain structures
formed by other messages, and arrays [7]. The messages are
transmitted by publishing them to a provided topic. Any
node interested in the data would need to subscribe to the
message to view the information transmitted by the other
node. Unlike some communication networks, the nodes have
no idea of another node’s existence.

3.2.1 ROS Message Types. Besides the messages provided
from the sensor information defined in [10] and the ROS
client, the following messages were also created to allow
communication between the TORCS simulator game engine
and the client nodes. Figure 2 shows the communication
network for the simulation of the genetic algorithm node
and one driver node. When multiple drivers are simulated,
the grouping /torcs_ros𝑋 (𝑋 is defined as a value between
1 and 10) would be duplicated for the number of drivers in
the simulation. The node /torcs_ros_client_node1 provided
the UDP communication interface between the driver (bot in
Figure 1) and the game engine and other ROS nodes [11]. The
client publishes all the sensor information defined in [10],
but in this project, only three of the topics /torcs_ros𝑋 /speed,
/torcs_ros𝑋 /sensors_state, and /torcs_ros𝑋 /scan_track are

subscribed. The node /torcs_ros𝑋 /torcs_ga1 is the driver
that controls the acceleration, braking, steering, clutch, and
gear shifting. All of these values are transmitted by the
/torcs_ros𝑋 /ctrl_cmd topic, which is defined by [11]. The
driver node publishes and subscribes to the message, so it
always has the previous values transmitted when new values
are calculated. There is one signal node called /torcs_ga_alg,
which contains the GA definition and evaluation functions.

The following sections describe the custom messages that
were created for this project and the analysis of the genetic
algorithm.

Table 1: 𝐷𝑟𝑖𝑣𝑒𝑟𝑃𝑎𝑟𝑎𝑚𝑠 message definition.

Datatype Name

uint8[] newParams

3.2.1.1 Driver Parameters. The 𝐷𝑟𝑖𝑣𝑒𝑟𝑃𝑎𝑟𝑎𝑚𝑠 message
provides the configuration for the fuzzy logic controllers
defined in a later section as calculated by the genetic algo-
rithm. The definition provides an array, or list, of values
that the subscribing node can receive, unpack, and apply to
their controllers. The genetic algorithm node transmits the
𝐷𝑟𝑖𝑣𝑒𝑟𝑃𝑎𝑟𝑎𝑚𝑠 message after evaluating the current gener-
ation to each driver node with new controller values. The
new values are to be applied to the driver nodes to prepare
them for the next generation.

Table 2: 𝐿𝑎𝑝𝑆𝑡𝑎𝑡𝑢𝑠 message definition..

Datatype Name

Header header
uint8 nodeId

float64[] lapTimes
float64 Damage
float64 maxSpeed
uint8 lapsCompleted

3.2.1.2 Lap Status. The 𝐿𝑎𝑝𝑆𝑡𝑎𝑡𝑢𝑠 message provides in-
formation from the client nodes to the genetic algorithm
node at the game tic rate of 20ms (50Hz). The message’s
header is a ROS-specific data type of ROS that contains
a sequence identification and timestamp of the message.
While this is not required, it helps debug to ensure that mes-
sages are transmitted, and nodes are not receiving stale data.
The 𝑛𝑜𝑑𝑒𝐼𝑑 provides the unique identifier of the node. The
𝑙𝑎𝑝𝑇𝑖𝑚𝑒𝑠 is an array of the completed lap times for the driver.
The 𝑑𝑎𝑚𝑎𝑔𝑒 provides the amount of damage the vehicle has
received by contacting the walls of the track. The𝑚𝑎𝑥𝑆𝑝𝑒𝑒𝑑



Nosowsky and Smith

Figure 2: ROS topics for the genetic algorithm node and a single driver node.

provides the maximum speed (in KPH) of the driver over the
entire race. Finally, the 𝑙𝑎𝑝𝑠𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑 provides how many
laps were completed by the driver node. This information is
sent from the driver node to the genetic algorithm node for
fitness function processing for the current generation.

Table 3: 𝑅𝑒𝑠𝑡𝑎𝑟𝑡𝑅𝑎𝑐𝑒 message definition.

Datatype Name

Header header
uint8 mode

3.2.1.3 Restart Race. The 𝑅𝑒𝑠𝑡𝑎𝑟𝑡𝑅𝑎𝑐𝑒 message indicates
to the driver nodes that the simulation will restart. The ge-
netic algorithm processing node provides it, and all the driver
nodes are subscribed to it. When the mode equals a value
of 1, the driving nodes prepare for the restart by no longer
updating their 𝐿𝑎𝑝𝑆𝑡𝑎𝑡𝑢𝑠 message and clearing their local
data. When the mode bit is set back to 0, the TORCS race is
restarted, placing all the drivers back to the start of the race
with no damage, lap times, or any other information from
the previous generation. During this time, the new controller
values have been provided and are available for the driver
node to use.

3.3 Fuzzy Controllers
There are 19 sensors provided by the SCR that provide the dis-
tance from the vehicle’s center to the edge of the track. The
sensors provide a range of -90 to 90 degrees from the vehi-
cle’s left side to the right side. Figure 3 displays a screenshot
of TORCS with the information from the sensors overlayed
on the image at the moment the screenshot was taken. The
red and green axis markers and the red dots are created from
the RViz tool built-in with the ROS distribution. The axis

origin would be the center of the vehicle, and the distance
the points are away from the origin is the distance reading
of the sensors to the track’s edge. The image in Figure 3
is a screenshot of TORCS and RViz captured at the same
time. The two images were combined to create a live view of
the measurement. The yellow lines were added as a reader’s
guide to show the sensor’s approximate path from the ve-
hicle’s center. The front sensors’ measurements are out of
frame but are measuring the contour of the curve that the
vehicle is currently navigating. These sensors are used in the
two fuzzy controllers that were implemented to control the
vehicle’s speed and steering.

Figure 3: SCR Sensors overlayed on vehicle.

3.3.1 Speed Controller. The speed controller determines
the optimal target speed of the car around curves and on a
straight segment of the track. This controller has two pri-
mary goals: drive fast and drive safe. This is determined by



Evolutionary Approach to Finding an Optimal Racing Line in a Vehicle Simulator

the genetic algorithm’s fitness function that will be described
in later sections. These sensors are used to measure the max
distance from the vehicle to the edge of the track. Specifically,
we are using the 0 degrees (𝐹𝑟𝑜𝑛𝑡 ) and the left and right side
angle sensors at intervals ±5 and ±10 degrees of the vehicle’s
center (𝑀5 and𝑀10, respectively). The fuzzy logic uses trape-
zoid membership functions, bounded by Eq 1 and defined
by Eq 2, that determine if a sensor is either 𝐻𝑖𝑔ℎ, 𝑀𝑒𝑑𝑖𝑢𝑚

(or𝑀𝑖𝑑), or 𝐿𝑜𝑤 . The fuzzy logic rules for this controller are
defined in table 4. This is a similar design to the controller
rule set the authors in [12] defined, but controller nodes
are unique in their implementation and handling of events.
These base rules were also created to model the behavior of a
human driving expert. In other words, the rules are designed
to maximize the car speed depending on the distance to the
track border. The speed controller is also responsible for
clutch and steering controls. These were based on the con-
trols found in the ROS client implementation located in the
source code of this project [11]. The target speed rule for this
controller is 𝑇𝑎𝑟𝑔𝑒𝑡𝑆𝑝𝑒𝑒𝑑 = [280, 240, 220, 180, 120, 60, 30].

0 = 𝑥0 ≤ 𝑥1 ≤ 𝑥2 ≤ 𝑥3 ≤ 𝑥4 ≤ 𝑥5 ≤ 𝑥6 ≤ 𝑥7 = 200 (1)

𝑆𝐿𝑜𝑤 (𝑥) =


1, 𝑥1 ≤ 𝑥 ≤ 𝑥2
𝑥3−𝑥
𝑥3−𝑥2 , 𝑥2 ≤ 𝑥 ≤ 𝑥3
0, 𝑥 > 𝑥3

𝑆𝑀𝑒𝑑𝑖𝑢𝑚 (𝑥) =


0, 𝑥 ≤ 𝑥2
𝑥−𝑥2
𝑥3−𝑥2 , 𝑥2 ≤ 𝑥 ≤ 𝑥3
1, 𝑥3 ≤ 𝑥 ≤ 𝑥4
𝑥5−𝑥
𝑥5−𝑥4 , 𝑥4 ≤ 𝑥 ≤ 𝑥5
0, 𝑥 > 𝑥5

𝑆𝐻𝑖𝑔ℎ (𝑥) =


0, 𝑥 ≤ 𝑥4
𝑥−𝑥4
𝑥5−𝑥4 , 𝑥4 ≤ 𝑥 ≤ 𝑥5
1, 𝑥 > 𝑥5

(2)

Table 4: Speed controller fuzzy logic ruleset.

Condition If True

𝐹𝑟𝑜𝑛𝑡 = 𝐻𝑖𝑔ℎ 𝑇𝑎𝑟𝑔𝑒𝑡𝑆𝑝𝑒𝑒𝑑 [0]
𝐹𝑟𝑜𝑛𝑡 = 𝑀𝑒𝑑 𝑇𝑎𝑟𝑔𝑒𝑡𝑆𝑝𝑒𝑒𝑑 [1]
𝐹𝑟𝑜𝑛𝑡 = 𝐿𝑜𝑤 and𝑀5 = 𝐻𝑖𝑔ℎ 𝑇𝑎𝑟𝑔𝑒𝑡𝑆𝑝𝑒𝑒𝑑 [2]
𝐹𝑟𝑜𝑛𝑡 = 𝐿𝑜𝑤 and𝑀5 = 𝑀𝑒𝑑 𝑇𝑎𝑟𝑔𝑒𝑡𝑆𝑝𝑒𝑒𝑑 [3]
𝐹𝑟𝑜𝑛𝑡 = 𝐿𝑜𝑤 and𝑀5 = 𝐿𝑜𝑤 and𝑀10 = 𝐻𝑖𝑔ℎ 𝑇𝑎𝑟𝑔𝑒𝑡𝑆𝑝𝑒𝑒𝑑 [4]
𝐹𝑟𝑜𝑛𝑡 = 𝐿𝑜𝑤 and𝑀5 = 𝐿𝑜𝑤 and𝑀10 = 𝑀𝑒𝑑 𝑇𝑎𝑟𝑔𝑒𝑡𝑆𝑝𝑒𝑒𝑑 [5]
𝐹𝑟𝑜𝑛𝑡 = 𝐿𝑜𝑤 and𝑀5 = 𝐿𝑜𝑤 and𝑀10 = 𝐿𝑜𝑤 𝑇𝑎𝑟𝑔𝑒𝑡𝑆𝑝𝑒𝑒𝑑 [6]
𝐹𝑟𝑜𝑛𝑡 = 𝑀𝐴𝑋 or𝑀5 = 𝑀𝐴𝑋 or𝑀10 = 𝑀𝐴𝑋 𝑀𝑎𝑥𝑆𝑝𝑒𝑒𝑑 = 300

3.3.2 Steering Controller. The steering controller determines
the optimal steering angle and determines the target position
of the vehicle on the track. The same sensors are used in the
speed controller: 𝐹𝑟𝑜𝑛𝑡 ,𝑀5, and𝑀10. The steering actuator
in the client expects a value between -1 and 1 (full left or
full right, respectively) as per the definition found in [10].
Like the speed controller, the design closely follows previ-
ous designs documented in [12] and [11] and the ruleset is
summarized in Table 5. The steering value set is defined as
𝑇𝑎𝑟𝑔𝑒𝑡𝑆𝑡𝑒𝑒𝑟𝑖𝑛𝑔 = [0, 0.25, 0.5, 1]

Table 5: Steering controller fuzzy logic ruleset.

Condition If True

𝐹𝑟𝑜𝑛𝑡 = 𝐻𝑖𝑔ℎ 𝑇𝑎𝑟𝑔𝑒𝑡𝑆𝑡𝑒𝑒𝑟 [0]
𝐹𝑟𝑜𝑛𝑡 = 𝑀𝑒𝑑 and𝑀10 = 𝐻𝑖𝑔ℎ 𝑇𝑎𝑟𝑔𝑒𝑡𝑆𝑡𝑒𝑒𝑟 [1]
𝐹𝑟𝑜𝑛𝑡 = 𝑀𝑒𝑑 and𝑀5 = 𝑀𝑒𝑑 and𝑀10 = 𝑀𝑒𝑑 𝑇𝑎𝑟𝑔𝑒𝑡𝑆𝑡𝑒𝑒𝑟 [1]
𝐹𝑟𝑜𝑛𝑡 = 𝑀𝑒𝑑 and𝑀5 = 𝐿𝑜𝑤 and𝑀10 = 𝑀𝑒𝑑 𝑇𝑎𝑟𝑔𝑒𝑡𝑆𝑡𝑒𝑒𝑟 [2]
𝐹𝑟𝑜𝑛𝑡 = 𝐿𝑜𝑤 and𝑀10 = 𝐻𝑖𝑔ℎ 𝑇𝑎𝑟𝑔𝑒𝑡𝑆𝑡𝑒𝑒𝑟 [2]
𝐹𝑟𝑜𝑛𝑡 = 𝐿𝑜𝑤 and𝑀5 = 𝑀𝑒𝑑 and𝑀10 = 𝑀𝑒𝑑 𝑇𝑎𝑟𝑔𝑒𝑡𝑆𝑡𝑒𝑒𝑟 [3]
𝐹𝑟𝑜𝑛𝑡 = 𝐿𝑜𝑤 and𝑀5 = 𝐿𝑜𝑤 and𝑀10 = 𝑀𝑒𝑑 𝑇𝑎𝑟𝑔𝑒𝑡𝑆𝑡𝑒𝑒𝑟 [3]

4 GENETIC ALGORITHM
The project utilized the single-objective genetic algorithm
to optimize our controllers’ parameters. This algorithm is
implemented from the Pymoo module, and it implements a
basic (𝜇 + 𝜆) genetic algorithm [5]. The (𝜇 + 𝜆)family typ-
ically initializes a randomly uniform population and, after
each generation, creates 𝜆 offspring [13]. Figure 4 shows a
flow diagram of how the algorithm is processed by the vari-
ous operators. Details of the operators are discussed in the
following sections.

4.1 Encoding
The chromosome for the genetic algorithm is made up of
three parts. Each part represents one of the three sensors:
𝐹𝑟𝑜𝑛𝑡 , 𝑀5, and 𝑀10, as discussed earlier. Each sensor con-
sists of six data points that describe the shape of the trapezoid
functions that define the values of 𝐿𝑜𝑤 ,𝑀𝑒𝑑𝑖𝑢𝑚, and 𝐻𝑖𝑔ℎ.
These points must match the constraints defined in Eq 1. For
points, 𝑥0 and 𝑥7 are not considered in the chromosome en-
coding for our GA. This is because the sensors have a limited
range of 0 to 200 [10]. Since the endpoints are fixed, if the
sensor reading was a low value, it needed to ensure that the
𝐿𝑜𝑤 reading value would always be read as a logical 𝑇𝑟𝑢𝑒 .
So the points 𝑥1 and 𝑥6 were also always defined as 0 and
200, respectively. This provided no gaps at the endpoints;
the trapezoids for the 𝐿𝑜𝑤 and 𝐻𝑖𝑔ℎ sensor could be as big
or small as needed.



Nosowsky and Smith

Figure 4: Genetic Algorithm Process.

Figure 5 illustrates a summary of the previous paragraph.
The patterned regions would be the fixed endpoints (values 0
and 200 respectively), and themiddle six points are the values
in the part of the chromosome. The colors represent the fuzzy
value that would be represented if the input value falls into
that region: The blue band represents the 𝐿𝑜𝑤 value, the red
band represents the𝑀𝑒𝑑𝑖𝑢𝑚 value, and the yellow band is
the𝐻𝑖𝑔ℎ value. This is repeated for the other two sensors, M5
and M10, in the chromosome as well. By selecting random
values for each of the data points, the membership functions
can be visually analyzed as shown in Figure 6 by following
the formulas defined in Eq 2.

Figure 5: Bit encoding for each sensor.

4.2 Initialization
The population was initialized by two different methods in
our testing. The first method was to take parameters of a
working set as the base of the population. We keep the base
individual as our first population member, then mutate the
other nine individuals using the built-in polynomialmutation
in the Pymoo library [5]. The mutation rate for this change
was 30%, with an 𝜂 value of 3. This method, starting from a
base chromosome, gave us at least one working population
member in our first generation to ensure a finishing driver.

Figure 6: Example for the 𝐹𝑟𝑜𝑛𝑡 sensor trapezoid mem-
bership functions.

It also gave us a working starting point so that we could find
an optimal solution faster. The other method was using the
random integer sampling function provided in the Pymoo
library [5]. This method allowed for a better exploration of
other solutions instead of relying on a base individual to start.
These methods give us the ability to analyze our algorithm’s
performance from evolution and genetic improvement point
of view.

4.3 Survival and Selection
To determine what population members become parents, we
will be going with a tournament selection, defaulted to size
2 for the Pymoo library. Since the size of our tournament
selection is 2, the default function is a binary tournament
selection. This means that for each generation, we will be
selecting randomly two individuals to compete in the tour-
nament. The individual that has the highest fitness will be
the one selected to move on to the next generation.

4.4 Crossover
For the crossover operator, we went with an integer simu-
lated binary crossover. This will produce new parameters in
the offspring, also inheriting the parents’ old parameters. Us-
ing crossover helps with keeping good characteristics from
our selected parents, passing them on to further generations
[8]. This will get our GA to converge to reasonable solutions
(Exploitation). The determined crossover rate was set to 0.7.
This rate determines the number of times a crossover oc-
curs for the chromosomes in one generation. To keep some
variation, we did not raise the rate any further.



Evolutionary Approach to Finding an Optimal Racing Line in a Vehicle Simulator

4.5 Mutation
The mutation operator uses integer polynomial mutation
for selecting genes to mutate in our chromosomes. Mutation
plays a significant role in making our overall search efficient,
allowing for exploration across our search space so that
we do not converge to a local optimum. With this in mind,
we chose a mutation rate of 0.3. The rate determines how
many of our chromosomes we would mutate in one given
generation. Increasing this rate would bring in too much
diversity. Likewise, decreasing the rate below our set value
was causing premature convergence [8].

4.6 Repair
The repair function ensures that the fuzzy logic parameters
meet the constraint in Eq 1 for each sensor. If the values do
not follow the constraint, the value is replaced with a random
integer value between the points that surround this value.
This ensures that each node is receiving a properly defined
set of values. However, this does have some impact on the
size of the search space for new values, but this is a necessary
change, or else the controllers will not behave correctly. If
the constraint is met, the genetic algorithm has complete
control over the values from the tournament, crossover, and
mutation phases.

4.7 Fitness Function
We went with a fitness function that establishes our previ-
ously mentioned goal: drive fast and drive safely. In order to
establish this, we define a function that takes in each driver
set of lap times in the current generation, along with the
damage they received. Below in Eq 3 we include both of these
parameters, taking the average of the lap times, 𝐿, and adding
it to the driver’s damage, 𝐷 . Both parts should be minimized
as much as possible to achieve optimal results. The driver
with the lowest score would be the "fittest" individual in the
population as they would have had the fastest lap. We also
set a scalar variable, 𝛼 , that can be adjusted to give more or
less weight to the importance of achieving lower lap times
compared to achieving lower damage. The fitness function
will be residing in the evaluation step of our genetic algo-
rithm once the three laps for the current generation have
been completed. Once the laps are complete, we collect all
the lap times and damages from each driver to send to our
fitness function.

𝐹 = 𝐷 + (𝛼𝐿) (3)
In this case, we are treating the damage as a time penalty,

with the damage value being added to the lap time on a
scale of seconds. However, another approach could be to
change the genetic algorithm to a multi-objective optimiza-
tion problem and use the lap time and the damage as the

two distinct objectives to optimize. The decision to stay with
a single-objective optimization problem came from having
zero damage on the vehicles. The overall fitness rating would
severely penalize even a slight tap on the wall.

5 SIMLUATION RESULTS
Our simulation was initialized and performed with a known
driver configuration from experimenting with the design of
the driver nodes. The known configuration was duplicated
for the population size (10) and was then mutated by the
same configuration used within the genetic algorithm. This
provided a good starting point to start the drivers for the
simulation. However, the mutation also provided some pop-
ulation diversity instead of simply copying the same driver
configuration for all ten members. Consequently, this makes
the problem a genetic improvement instead of a genetic
optimization. The simulation was repeated with the same
seeding, but a randomly generated integer sample replaced
the initial population. The additional testing goal was to
ensure that the simulation results converged without any un-
intentional bias. The repair function processed the randomly
selected members before the first-generation evaluation. Ta-
ble 6 shows the results of these tests. The known seed values
were selected arbitrarily, where a random value was applied
for the pre-populated set and the randomly generated sample.
Figure 7 shows how the optimal fitness values progressed
over the 100 generation tests, while figure 8 shows the aver-
age over the 100 generations.

Figure 7: 𝐹𝑜𝑝𝑡 values per generation for 100 generation
test runs.

In comparison with the results we obtained, we also per-
formed single races with the built-in drivers driving the exact
vehicle in our tests. However, there were complications when
running the built-in drivers as to our GA testing. The built-in
drivers would load a specific amount of fuel proportionally
to the number of laps configured for the race. If the race
was configured for over 100 laps, the fuel tank would be full,
but only three laps the fuel take would be just about empty.
The difference in fuel gave the built-in drivers a boost as
there was over a second in lap speed time just based on the



Nosowsky and Smith

Table 6: GA Best solution results

Test Case Seed Num. of Generations Initial Pop. Set Best Solution Value [F]

1 1 50 Pre-populated Set 29.58
2 1 50 Random Integer Sample 37.39
3 1 50 Pre-populated Set with 70% mutation rate 34.44
4 1 50 Random Integer Sample with 70% mutation rate 32.44
5 1983 50 Pre-populated Set 32.17
6 1983 50 Random Integer Sample 31.99
7 1 100 Pre-populated Set 29.59
8 1 100 Random Integer Sample 32.10
9 1983 100 Pre-populated Set 29.54
10 1983 100 Random Integer Sample 32.14
11 Random 100 Pre-populated Set 32.02
12 Random 100 Random Integer Sample 32.09

Figure 8: 𝐹𝑎𝑣𝑔𝑡 values per generation for 100 generation
test runs.

different fuel amounts. In order to have a fair comparison,
the built-in drivers needed to be measured with the same
amount of fuel. The built-in drivers were placed in a race of
100 laps and ran ten laps. The average of those ten laps is
shown in table 7.

Table 7: Average lap times for built-in TORCS drivers

Driver Average Lap Time (10 laps)

Berniw 3 29.66
Olethros 3 32.00

Bt 3 31.78
Tita 3 29.67

Inferno 3 29.67
Lliaw 3 29.67

6 CONCLUSIONS AND FUTURE
IMPROVEMENTS

In this work, we presented a genetic algorithm approach
towards optimizing a vehicle to navigate around a racetrack,

choosing the best racing line to achieve the fastest lap and
smallest damage. We chose TORCS as the simulator and
optimized an already existing driver implemented in the
simulator. We also modified the driver to include two fuzzy
sub-controllers to calculate the target speed and steering.

The obtained results are very promising, as our driver was
able to successfully reduce its lap time through the gener-
ations and decrease overall damage. Furthermore, we com-
pared our obtained driver’s results with the other AI drivers
included in the TORCS application. Our results indicate that
we are right in line, if not better than the drivers. Figure 9
shows the 𝐹𝑟𝑜𝑛𝑡 ,𝑀5, and𝑀10 sensor configurations at the
first generation and displays them with the configurations
after the 100th generation.
The testing included two known seed values and an en-

tirely randomly selected seeding. All three seeds were tested
with a known staring configuration and a randomly gener-
ated population set for the initial driver configuration. The
goals of having a known set with a randomly generated set
were to ensure that we have some diversity in our population
members and to keep the problem as an optimization instead
of becoming a genetic improvement problem. Also, we in-
creased the mutation probability from 30% to 70% for two
tests, along with a high crossover rate of 70%. As mentioned
in the text, this was to increase the diversity of the popula-
tion and widen our search scope. However, the run of the
50 results showed very similar results to our other testing.
Most likely, the cause is that we are looking for diversity
in a limited search space. The population members need to
follow a constraint that each of the six points needs to be
greater than or equal to the previous point and fit within
a value range of 0 to 200. This limitation means that our
existing search space for diversity is going to be limited in
the number of combinations we can test.



Evolutionary Approach to Finding an Optimal Racing Line in a Vehicle Simulator

While the results are already satisfactory, the results can
be both improved and extended. One of the mechanisms we
implemented was giving the car the best angle leading into
the turn. This mechanism makes sure that the driver stays
close to the wall while on a straight segment of the track.
Keeping it in this boundary means that the driver made mi-
nor steering adjustments not to leave our defined boundary.
This caused the driver to wobble slightly. By adding a PID
controller, this strategy could still work more smoothly. As
mentioned above, another improvement could be made in
dealing with boundary control. The boundary could be re-
fined to consider all tracks, especially the ones where the
wall is closer to the track border, to avoid the additional dam-
age received on the straightway. Lastly, extending the project
to consider fuel, tire friction, and other vehicle dynamics in
the GA calculation could help further lower our lap time and
be considerably better across simulators with dynamic track
temperatures and environmental considerations.

ACKNOWLEDGMENTS
To Dr. Erik Goodman, for sharing his insights and working
with us in defining and implementing our genetic algorithm.

REFERENCES
[1] 2001. Assetto Corsa Competizione. https://www.assettocorsa.it/

competizione/
[2] 2021. iRacing. https://www.iracing.com/
[3] 2021. ROS. https://ros.org/
[4] 2021. TORCS. http://torcs.sourceforge.net/index.php
[5] Julian Blank and Kalyanmoy Deb. 2020. Pymoo: Multi-Objective

Optimization in Python. IEEE Access 8 (2020), 89497–89509. https:
//doi.org/10.1109/ACCESS.2020.2990567

[6] Luigi Cardamone, Daniele Loiacono, Pier Luca Lanzi, and Alessan-
dro Pietro Bardelli. 2010. Searching for the optimal racing line us-
ing genetic algorithms. Proceedings of the 2010 IEEE Conference on
Computational Intelligence and Games, CIG2010, 388–394. https:
//doi.org/10.1109/ITW.2010.5593330

[7] Steve Cousins. 2010. Welcome to ROS topics. IEEE Robotics and
Automation Magazine 17 (3 2010), 13–14. Issue 1. https://doi.org/10.
1109/MRA.2010.935808

[8] Kalyanmoy Deb, Karthik Sindhya, and Tatsuya Okabe. 2007. Self-
adaptive simulated binary crossover for real-parameter optimization.
Proceedings of GECCO 2007: Genetic and Evolutionary Computation
Conference, 1187–1194. https://doi.org/10.1145/1276958.1277190

[9] Jon Lewis. [n.d.]. Most-watched sporting events of 2021 so far - Sports
Media Watch. https://www.sportsmediawatch.com/2021/07/50-most-
watched-sporting-events-2021-so-far/

[10] Daniele Loiacono, Luigi Cardamone, and Pier Luca Lanzi. 2013. Sim-
ulated Car Racing Championship: Competition Software Manual. (4
2013). http://arxiv.org/abs/1304.1672

[11] Florian Mirus. 2018. Repo for interfacing TORCS with ROS. https:
//github.com/fmirus/torcs_ros

[12] Mohammed Salem, Antonio Miguel Mora, Juan Julian Merelo, and
Pablo García-Sánchez. 2018. Evolving a TORCS Modular Fuzzy Driver
UsingGenetic Algorithms. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics) 10784 LNCS, 342–357. https://doi.org/10.1007/978-3-
319-77538-8_24

[13] Furong Ye, Hao Wang, Carola Doerr, and Thomas Bäck. 2020. Bench-
marking a (𝜇 + 𝜆) Genetic Algorithm with Configurable Crossover
Probability. (6 2020). https://doi.org/10.1007/978-3-030-58115-2_49

A SOURCE CODE
The source code for this project can be found at the public
GIT repository link below. The project is structured as a set
of ROS nodes and should be cloned to the user’s workspace
of the ROS framework. Once the nodes are compiled, the ROS
launch scripts can be used to start the GA node and the driver
nodes. More specific details on downloading, installing, and
executing can be found in the 𝑅𝑒𝑎𝑑𝑀𝑒 file within the GIT
project.

• Source code URL:
– https://bitbucket.org/kjslabs/torcs_ga/src/master/

• Pymoo 0.5.0
• ROS 1 - Noetic Ninjemys
• Python 3.8

https://www.assettocorsa.it/competizione/
https://www.assettocorsa.it/competizione/
https://www.iracing.com/
https://ros.org/
http://torcs.sourceforge.net/index.php
https://doi.org/10.1109/ACCESS.2020.2990567
https://doi.org/10.1109/ACCESS.2020.2990567
https://doi.org/10.1109/ITW.2010.5593330
https://doi.org/10.1109/ITW.2010.5593330
https://doi.org/10.1109/MRA.2010.935808
https://doi.org/10.1109/MRA.2010.935808
https://doi.org/10.1145/1276958.1277190
https://www.sportsmediawatch.com/2021/07/50-most-watched-sporting-events-2021-so-far/
https://www.sportsmediawatch.com/2021/07/50-most-watched-sporting-events-2021-so-far/
http://arxiv.org/abs/1304.1672
https://github.com/fmirus/torcs_ros
https://github.com/fmirus/torcs_ros
https://doi.org/10.1007/978-3-319-77538-8_24
https://doi.org/10.1007/978-3-319-77538-8_24
https://doi.org/10.1007/978-3-030-58115-2_49


Nosowsky and Smith

Figure 9: X values after the 1𝑠𝑡 and 100𝑡ℎ generation for the 1983 seed, pre-populated population


	Abstract
	1 Introduction
	2 Problem Description
	3 Simulation and Testing Environment
	3.1 TORCS
	3.2 ROS
	3.3 Fuzzy Controllers

	4 Genetic Algorithm
	4.1 Encoding
	4.2 Initialization 
	4.3 Survival and Selection 
	4.4 Crossover
	4.5 Mutation
	4.6 Repair
	4.7 Fitness Function

	5 Simluation Results
	6 Conclusions and Future Improvements
	Acknowledgments
	References
	A Source Code

